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Genetic geological models are conceptual frameworks for the processes and origin of mineral deposits.

Geological factors: rock type, mineralization style, structural controls, alteration patterns, etc.
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Roxby Downs Granite

Pirajno and Bagas, 2008 .4

Model for the formation of Fe oxide Cu-Au deposits at different crustal levels
(adapted from Davidson, 2002, Ahmad et al., 1999 and Solomon et al., 2000)
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Understanding Formation
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enetic geological models can be effectively applied to lunar
resources
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Q Observational Evidence

I Data available
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&( Geological Knowledge

;ﬁc Current research at ESRIC

Hydrogen Reduction of limenite for the Production of Oxygen and Metals from
Lunar Regolith: Current Research at ESRIC, Dennis Harries (Thursday @ 1:15pm)
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TiO, content
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Volcanic features

. Irregular mare patch (IMP), type 1, Sosigenes

. IMP, type 2

A Dome (certain)

/_I‘J Dome (suspected)

A Ring-moat dome structure (RMDS)

Tectonic features
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-Magmatic foam. 8-10 wt%

-“Auto-Regolith” ; I .
-Mound \ ~A & > > 10 wt.%
: N Volcanic features
. Irregular mare patch (IMP), type 1, Sosigenes

. IMP, type 2

A Dome (certain)

/_I‘_‘ Dome (suspected)

A Ring-moat dome structure (RMDS)
Tectonic features

foamy lava lake 44 Wiinkleridge
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Solidified Non-Vesicular
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Initial topography (with variations up to tens of meters) influences deposit thickness and lateral continuity.
Initial proportion of components determines grain properties (vesicularity, sizes, shapes, etc.) in evolving regolith.
Different substrate responses to impact affects grain sizes, shapes, % agglutinates, abundances of rocks and thickness.

TYPICAL LAVA FLOW

Solid basaltic lava flows
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Typical mare regolith

Formation of fragmented ejecta
layers, optical maturity because
accumulation of impact-melt-welded
agglutinates, and degradation of
boulders by micrometeorites
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Inflated Flows:
Second Boiling
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Initially fined grained material,
impact-induced crushing of
vesicles and voids, and potential
slowing of maturation due to
drainage of the finest fraction into
the still porous substrate

(Head and Wilson, 2020)
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Known unknowns
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Presence on the Moon

Detected in significant abundances

llImenite composition well documented through analyses of lunar samples
Origin tied to volcanic activity and differentiation of lunar magma

Detailed mapping of distribution and variability of deposit
Origin of the parent magma and geological controls
Regolith layer development and geotechnical properties

Unanticipated geological processes
Unexpected spatial patterns
Unknown ilmenite variants
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The Pessimistic Geologist

The Optimistic Geologist
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The Geophysicist

The Mining Engineer

“All models are
wrong but some
are useful”

George E. P. Box
(1919-2013)




